The "motion-blind" patient: low-level spatial and temporal filters.
نویسندگان
چکیده
The "motion-blind" patient previously described by Zihl et al. (1983) was investigated using standard psychophysical procedures with stimuli whose spatial and temporal properties could be separately manipulated. Detection experiments for sinewave grating stimuli of varying spatial and temporal frequency showed sensitivity in this patient to be only slightly impaired. Temporal integration for stimuli of varying spatiotemporal frequency exhibited the expected space-time covariation seen in normal vision. An examination of the suprathreshold discriminative capacity of this patient was undertaken for spatial frequency, contrast, and temporal frequency. Although all of these discriminative functions were impaired, those concerning temporal frequency or velocity were dramatically reduced. No similar loss was seen for spatial frequency discrimination for moving or temporally varying stimuli. No measurable temporal frequency discrimination was present above 6 Hz and no velocity discrimination above 6 degrees/sec. Experiments involving the direction discrimination of suprathreshold drifting gratings of arrays of random dots revealed an inability to perceive direction of movement above a velocity of about 6 degrees/sec. Contrast thresholds contingent on direction of motion of a drifting grating also showed a much greater deficit than simple detection. Apparent motion using 2-flash random dot kinematograms revealed that the residual motion vision of this patient corresponded to the "short-range" motion process of normal vision. This process originally defined by Braddick (1974) operates over restricted space and time intervals. Apparent motion could only be supported by a narrow range of intermediate spatial displacements. These results suggest that this patient does exhibit some residual motion perception, probably corresponding to a severely impaired "short-range" mechanism. The patient's relatively intact ability to perform simple types of discrimination but severe impairment of performance at making judgments relevant to the nature of motion of the same stimuli suggests that while the components necessary for the analysis of motion are intact their more global associations have been disrupted. This implicates an extrastriate locus of the brain damage. Alternative explanations for the nature of the deficit are discussed.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملMitigation of Tropospheric Delay on InSAR Interseismic Displacements
One of the major challenges of Interferometric Synthetic Aperture Radar (InSAR) technique is the existence of tropospheric effect on the results. The tropospheric effect is due to the changes of atmospheric parameters including temperature, pressure, and humidity between the master and slave images. In this research, two different methods based on spatial-temporal filters and calculation of pha...
متن کاملTemporal Video Indexing Based on Early Vision Using Laguerre Filters
Visual information of videos is based on spatial and temporal extents. However, most of video indexing techniques work in the spatial extent. Thus, spatial features are extracted from individual frames and then temporal information is introduced by their temporal evolution or tracking in order to construct motion vectors that serve as temporal features. In this paper we present a novel approach...
متن کاملAdaptation of Filters and Quantization in Spatio-temporal Wavelet Coding with Motion Compensation
In spatio-temporal wavelet video coding with motion compensation (MC), motion-compensated temporal filtering (MCTF) using wavelet filters is combined with spatial wavelet decomposition, allowing for efficient spatio-temporal decorrelation and full scalability. As an extension to conventional MCTF, we introduce spatial lowpass transition filtering (SLTF) leading to an improved lower frame rate q...
متن کاملA Novel Temporal-Frequency Domain Error Concealment Method for Motion Jpeg
Motion-JPEG is a common video format for compression of motion images with highquality using JPEG standard for each frame of the video. During transmission through a noisychannel some blocks of data are lost or corrupted, and the quality of decompression frames decreased.In this paper, for reconstruction of these blocks, several temporal-domain, spatial-domain, andfrequency-domain error conceal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 9 5 شماره
صفحات -
تاریخ انتشار 1989